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Abstract

This work theoretically analyzes non-equilibrium thermal behavior in multi-layer metal films with the hyperbolic microscopic two-
step model. It is necessary to solve the coupled energy equations or an equation containing higher-order mixed derivatives in both time
and space for such problems. The difference in the relaxation times of dissimilar materials introduces the complexity and causes some
mathematical difficulties at the interfaces. A numerical scheme is developed in this work and is applied to the examples in double-layer
and triple-layer films with an ultrashort pulse heating. To evidence the efficiency of the present numerical scheme, the analytical solutions
for the illustrated examples are presented. The effects of the thermal property ratios of dissimilar metals on heat transfer are investigated.
It lends the theoretical insight to hyperbolic microscale heat transfer in multi-layer metal films. Results show the difference in the thermal
properties of dissimilar materials and the hyperbolic nature of heat transfer in electron gas sufficiently affect the thermal behavior in
multi-layer films at early times.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The multi-layer metal thin-films are widely used for the
satisfaction of all mechanical, thermal, and electronic
requirements in the development of microelectronics sys-
tem, photoelectric equipment and microsensors. The
advancement of ultrashort pulse laser technologies makes
high-rate heating of thin metal films rapidly develop in
micromachining, surface hardening, and other applica-
tions. However, ultrafast heating on the thin metal films
possibly induces thermal damage. Perry et al. [1] presented
that ultrashort pulses in the picosecond domain induce
thermal damage after the heating pulse is over. Experimen-
tal results [2,3] show that thermal damage induced by a suf-
ficiently high-rate heating does not have an obvious
signature by excessive temperature. These results further
imply that thermal damage can occur in the cold lattices
during ultrafast pulse heating on metal films. It is different
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with that the long-pulse laser heating often drives the
heated spot to the melting temperature. For the prevention
of thermal damage, the knowledge of ultrafast thermal
behavior is demanded.

During the ultrafast heating of thin metal films in the
pico/femtosecond domain, the response time of the film is
comparable to the phonon–electron thermalization time.
Solid lattice and electron gas are not in thermal equilib-
rium. Classical heat conduction models assuming thermal
equilibrium between solid lattice and electron gas lose
validity for the prediction of ultrafast thermal behavior.
Therefore, the microscale heat transfer models that
describe the phenomena of energy interchange between
electrons and phonons from a microscopic point of view
are proposed for such problems. The parabolic microscopic
two-step model has attracted attention in analysis of micro-
scale heat transfer [4–9]. However, as the response time is
comparable to or less than the relaxation time, which is
the characteristic time for the activation of ballistic behav-
ior in the electron gas, the hyperbolic nature of heat flux
carried by electrons is revealed. The parabolic two-step
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Nomenclature

C volumetric heat capacity
E dimensionless heating source, defined as

E ¼ Ssð1Þ
F

Cð1Þe T 0eE Laplace transform of E

G coupling factor
k thermal conductivity
‘ distance between neighboring nodes
M total number of layers
N parameter, defined as N ¼ Gð1Þsð1Þ

F

Cð1Þe

Q dimensionless heat flux, defined as
QðjÞ ¼ qðjÞ

T 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1ÞCð1Þe =sð1Þ

F

peQ Laplace transform of Q

q heat flux
Rc parameter, defined as Rc ¼

Cð1Þ
l

Cð1Þe

RðjÞe parameter, defined as RðjÞe ¼
CðjÞe

Cð1Þe

RðjÞk parameter, defined as RðjÞk ¼ kðjÞ

kð1Þ

RðjÞl parameter, defined as RðjÞl ¼
CðjÞ

l

Cð1Þ
l

RðjÞg parameter, defined as RðjÞg ¼ GðjÞ

Gð1Þ

RðjÞt parameter, defined as RðjÞt ¼
sðjÞ

F

sð1Þ
F

S heating source
s Laplace transform parameter

T temperature
T0 initial temperature
t time
V propagation speed of thermal signal, defined as

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=CesF

p
x space coordinate

Greek symbols

b parameter, defined in Eq. (15)
g dimensionless space coordinate, defined as

g ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1Þsð1Þ

F
=Cð1Þe

p
h dimensionless temperature, defined as h ¼ T�T 0

T 0~h Laplace transform of h
n dimensionless time, defined as n ¼ t

sð1Þ
FsF relaxation time at Fermi surface

Superscript

j layer number

Subscripts

e electron
i node number
in interface
l lattice
n number of sub-space domain
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model may lose accuracy [10,11]. A reliable microscale heat
transfer model must be able to describe the various micro-
structural interaction effects. Qiu and Tien [10] thus derived
the hyperbolic two-step model from the Boltzmann trans-
port equation to account for the hyperbolic nature of heat
flux for electrons. The hyperbolic microscopic two-step
model is mathematically described with a set of coupled
energy equations.

A few works [12–16] for theoretical predictions of the
hyperbolic two-step heat conduction problems in the single
layer films are available in the literature. Al-Nimr and
Arpaci [12] considered that the thermal behavior in thin
metal films occurs in two separate stages. The first stage
is very short and is described with the hyperbolic two-step
model excluding the diffusion term. The second stage is
described with the hyperbolic one-step model. Al-Nimr
et al. [13] analyzed the distribution of both electron and lat-
tice temperatures in a semiconductor film induced with the
application of strong energy pulse. Naji [14] explored the
effect of a high frequency fluctuating boundary heating
on hyperbolic two-step model. Ref. [15] identifies models
that are suitable for describing thermal transport in metal
materials heated by a short-pulse laser. Liu [16] have devel-
oped some analytical solutions in Laplace transform
domain. It is observed from these literatures [12–16] that
the solution of the hyperbolic two-step heat conduction
problem in a single layer film is difficultly obtained. Due
to the complexity and mathematical difficulties induced
with the interfacial boundary conditions, the hyperbolic
two-step heat conduction problem in multi-layer thin films
is more difficult to solve and seems not to be studied. How-
ever, there are a few literatures [17–19] for the parabolic
two-step problems in multi-layer thin films. The literature
[17] shows the large change of temperature gradient at
the interface of dissimilar materials. At the same time,
Tzou et al. [18] indicate that the ultrafast thermal damage
depends on temperature and temperature gradient. As a
result, the effect of the hyperbolic nature of heat transfer
is worthy to note, because it may induce the discontinuity
of the temperature gradient in a heat transfer medium
[20–22].

This work will lend the theoretical insight to hyperbolic
microscale heat transfer in multi-layer metal films. As Al-
Nimr and Arpaci [12] stated, the solution of the coupled
energy equations in the microscopic hyperbolic two-step
model is difficultly obtained, even after eliminating the cou-
pling, because the resulting equation contains higher-order
mixed derivatives in both time and space and leads to com-
plications in the solution procedures. This work develops a
numerical scheme for the hyperbolic two-step heat conduc-
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tion problem in multi-layer thin films. The Laplace trans-
form technique is used to map the transient problem into
steady one. The governing algebraic equations are derived
from the continuity of electron temperature and heat flux
carried by electrons in conjunction with the approximation
functions, which are derived from a corresponding differen-
tial equation of the governing equation in the transform
domain. The examples in the double-layer and triple-layer
films with an ultrashort laser heating described with the
Dirac delta function are illustrated. To evidence the accu-
racy of the present numerical results, a comparison
between the present numerical results and the analytical
solution is made.
2. Mathematics model

This work considers that the multi-layer metal thin film,
as shown in Fig. 1, is heated with an ultrashort pulse laser.
The thermal behavior in the metal film is modeled as a one-
dimensional problem, if the laser beam diameter is much
larger than the heat penetration depth [10,11]. The laser
pulse duration is shorter than or comparable to the electron
relaxation time. As a result, the hot electrons are not in local
thermal equilibrium with the lattice and the hyperbolic
energy transport effect on the electron temperature becomes
important. Neglecting the thermal dependence of thermal
properties, energy conservation equations and the heat flux
equation for the hyperbolic microscopic two-step model in
layer j are written as [10]

CðjÞe

oT ðjÞe

ot
¼�oqðjÞ

ox
�GðT ðjÞe � T ðjÞl Þþ S ð1aÞ

CðjÞj
oT ðjÞl

ot
¼GðT ðjÞe � T ðjÞl Þ ð1bÞ

sðjÞF

oqðjÞ

ot
þ kðjÞ

oT ðjÞe

ox
þ qðjÞ ¼ 0 for layer j; j¼ 1; . . . ;M ð1cÞ

where C is the volumetric heat capacity, G the coupling fac-
tor, k the thermal conductivity, q the heat flux, S the radi-
ation heating source, T the temperature, t the time, x the
space coordinate, and sF is the relaxation time at Fermi
surface. The subscripts e and l symbol electron and lattice,
respectively. Qiu and Tien [10] derived these equations
under the assumptions that there is no electrical current
x
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Fig. 1. Schematic diagram of the multi-layer film.
during laser heating, the electron gas totally absorbed the
incident radiation, and the thermal conductivity is com-
pletely contributed with the electron gas. The hyperbolic
nature of energy transport by electrons is shown in Eq.
(1c). The sF

oq
ot term in Eq. (1c) can be neglected, as the value

of the relaxation time s is small enough, and then Eqs.
(1a)–(1c) will become the equations of the parabolic two-
step model.

As Qiu and Tien [10] stated, heat losses from the sur-
faces of the film can be neglected for that the duration of
laser heating is very short. Therefore, the boundary condi-
tions at the front and back surfaces are

qð1Þð0; tÞ ¼ qðMÞðxN ; tÞ ¼ 0 ð2Þ

Each layer is assumed to be in perfect thermal contact with
the adjacent layers. For the continuity of the electron heat
flux and temperature, the boundary conditions at the inter-
face of two layers are

qðjÞðxðj;jþ1Þ
in ; tÞ ¼ qðjþ1Þðxðj;jþ1Þ

in ; tÞ ð3aÞ

and

T ðjÞe ðx
ðj;jþ1Þ
in ; tÞ ¼ T ðjþ1Þ

e ðxðj;jþ1Þ
in ; tÞ ð3bÞ

where xðj;jþ1Þ
in is the position coordinate of the interface of

layer j and layer j + 1.
Electrons and lattice in the film are assumed to be in

thermal equilibrium at the initial status. The initial condi-
tions are

T ðjÞe ðx; 0Þ ¼ T ðjÞl ðx; 0Þ ¼ T 0 ð4aÞ

and

qðjÞðx; 0Þ ¼ 0 ð4bÞ

For convenience of statement and analysis, the dimen-
sionless parameters and the thermal property ratios are
defined as

h ¼ T � T 0

T 0

; g ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1Þsð1ÞF =Cð1Þe

q ; n ¼ t

sð1ÞF

;

QðjÞ ¼ qðjÞ

T 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1ÞCð1Þe =sð1ÞF

q ; N ¼ Gð1Þsð1ÞF

Cð1Þe

;

Rc ¼
Cð1Þl

Cð1Þe

; RðjÞe ¼
CðjÞe

Cð1Þe

; RðjÞk ¼
kðjÞ

kð1Þ
;

RðjÞl ¼
CðjÞl

Cð1Þl

; RðjÞg ¼
GðjÞ

Gð1Þ
; and RðjÞt ¼

sðjÞF

sð1ÞF

ð5Þ

Introducing the dimensionless parameters in Eq. (5) into
Eqs. (1)–(4) leads to the following dimensionless differential
equations of the present problem:
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RðjÞe

ohðjÞe

on
¼�oQðjÞ

og
�NRðjÞg ðh

ðjÞ
e � hðjÞl ÞþE ð6aÞ

RcR
ðjÞ
l

ohðjÞl

on
¼NRðjÞg ðh

ðjÞ
e � hðjÞl Þ ð6bÞ

RðjÞt

oQðjÞ

on
þQðjÞ ¼ �RðjÞk

ohðjÞe

og
for layer j; j¼ 1; . . . ;M ð6cÞ

subjected to the dimensionless boundary conditions

Qð1Þð0; nÞ ¼ QðMÞðgN ; nÞ ¼ 0 ð7Þ
QðjÞðgðj;jþ1Þ

in ; nÞ ¼ Qðjþ1Þðgðj;jþ1Þ
in ; nÞ ð8aÞ

hðjÞe ðg
ðj;jþ1Þ
in ; nÞ ¼ hðjþ1Þ

e ðgðj;jþ1Þ
in ; nÞ ð8bÞ

and the initial conditions

hðjÞe ðg; 0Þ ¼ hðjÞl ðg; 0Þ ¼ 0 ð9aÞ
QðjÞðg; 0Þ ¼ 0 ð9bÞ

where E is the dimensionless form of the source term S and
is defined as E ¼ Ssð1ÞF =Cð1Þe T 0.

3. Numerical analysis

The Laplace transform technique is used to map the
transient problem into the steady one. The Laplace trans-
form of a function /(n) with respect to n is defined as
follows:

~/ðsÞ ¼
Z 1

0

/ðnÞe�sn dn ð10Þ

where s is the Laplace transform parameter.
The dimensionless differential equations (6a)–(6c) and

the dimensionless boundary conditions (7), (8a) and (8b)
of the present problem are transformed under the initial
conditions (9a) and (9b) as

deQðjÞ
dg
¼ �ðRðjÞe sþ NRðjÞg Þ~hðjÞe þ NRðjÞg

~hðjÞl þ eE ð11aÞ

~hðjÞl ¼
NRðjÞg

RcR
ðjÞ
l sþ NRðjÞg

~hðjÞe ð11bÞ

d~hðjÞe

dg
¼ �RðjÞt sþ 1

RðjÞk

eQðjÞ for layer j; j ¼ 1; . . . ;M ð11cÞ

and

eQð1Þð0Þ ¼ eQðMÞðgN Þ ¼ 0 ð12Þ

eQðjÞðgðj;jþ1Þ
in Þ ¼ eQðjþ1Þðgðj;jþ1Þ

in Þ ð13aÞ

~hðjÞe ðg
ðj;jþ1Þ
in Þ ¼ ~hðjþ1Þ

e ðgðj;jþ1Þ
in Þ ð13bÞ

Rearrangement of Eqs. (11a)–(11c) leads to the equation

d2~hðjÞe

dg2
� bðjÞ

2 ~hðjÞe ¼ �
RðjÞt sþ 1

RðjÞk

eE ð14Þ
where

bðjÞ
2

¼ RðjÞe ðRðjÞt s2þ sÞþRðjÞg NðRðjÞt sþ1Þ�
ðRðjÞg NÞ2ðRðjÞt sþ1Þ

RcR
ðjÞ
l sþRðjÞg N

" #,
RðjÞk

ð15Þ
The boundary conditions (12) and (13a) can be rewritten in
conjunction with Eq. (11c) as

d~hð1Þe ð0Þ
dg

¼ 0 ð16aÞ

RðjÞk

RðjÞt sþ 1

d~hðjÞe ðg
ðj;jþ1Þ
in Þ

dg
¼ Rðjþ1Þ

k

Rðjþ1Þ
t sþ 1

d~hðjþ1Þ
e ðgðj;jþ1Þ

in Þ
dg

ð16bÞ

d~hðMÞe ðgN Þ
dg

¼ 0 ð16cÞ

For the continuity of the electron heat flux and temper-
ature within layer j, the following conditions are required
for the interior nodes in layer j:

~hðjÞe;n�1ðgiÞ ¼ ~hðjÞe;nðgiÞ ð17Þ

and

d~hðjÞe;n�1ðgiÞ
dg

¼
d~hðjÞe;nðgiÞ

dg
ð18Þ

In order to obtain more accurate numerical results, the
derivation of the governing algebraic equations is impor-
tant. This work plans to derive the governing algebraic
equations from Eqs. (17) and (18). In other words, the
selection of the approximation functions of ~he for the pres-
ent problem is an important step. The present work
determines the approximation function of ~he for the
sub-space domain n, [gi,gi+1], as

~hðjÞe;n ¼ An cosh bðjÞgþ Bn sinh bðjÞgþ ~P ðjÞ ð19Þ

It is easily observed that Eq. (19) is the analytical solution
of Eq. (14) in the sub-space domain [gi,gi+1] while the func-
tion ~P ðjÞ is the particular solution of Eq. (14). Therefore,
Eq. (19) can be written with the boundary conditions

~hðjÞe;nðgiÞ ¼ ~hðjÞe;i and ~hðjÞe;nðgiþ1Þ ¼ ~hðjÞe;iþ1 ð20Þ
as

~hðjÞe;n ¼
1

sinh bðjÞ‘ðjÞ
sinh bðjÞðg� giÞð~he � ~P ÞðjÞiþ1

h
þ sinh bðjÞðgiþ1 � gÞð~he � ~P ÞðjÞi

i
þ ~P ðjÞ ð21Þ

Similarly, Eq. (19) in the sub-space domain n � 1, [gi�1,gi],
can be written as

~hðjÞe;n�1 ¼
1

sinh bðjÞ‘ðjÞ
sinh bðjÞðg� gi�1Þð~he � ~P ÞðjÞi

h
þ sinh bðjÞðgi � gÞð~he � ~P ÞðjÞi�1

i
þ ~P ðjÞ ð22Þ

where ‘ denotes the length of sub-space domain or the dis-
tance between two neighboring nodes. The value of ‘ can
be different in the different layer. The subscript i is the num-
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ber of node. The previous works [20–22] have used the sim-
ilar approximation functions of temperature in conjunction
with the control volume method to discretize the hyper-
bolic and dual-lag-phase heat conduction equations.

Subsequently, substituting Eqs. (21) and (22) into Eq.
(18) and then evaluating the resulting derivative can pro-
duce the following discretized form for the interior nodes
in layer j as

Ci�1
~hðjÞe;i�1 þ Ci

~hðjÞe;i þ Ciþ1
~hðjÞe;iþ1 ¼ F ðjÞi ð23Þ

where the coefficients Ci�1, Ci, and Ci+1 are given as

Ci�1 ¼ 1 ð24aÞ
Ci ¼ �2 coshðbðjÞ‘ðjÞÞ ð24bÞ
Ciþ1 ¼ 1 ð24cÞ

and the forcing term is given as

F ðjÞi ¼ ~P ðjÞi�1 � 2 cosh bðjÞ‘ðjÞ~P ðjÞi þ ~P ðjÞiþ1 ð25Þ

where ~pðjÞi ¼ ~P ðjÞðgiÞ.
The discretized form for the node Nj at the interface of

layer j and layer j + 1 can be produced from Eqs. (16b),
(21), and (22) as

CNj�1
~hðjÞe;Nj�1 þ CNj

~hðj;jþ1Þ
e;Nj

þ CNjþ1
~hðjþ1Þ

e;Njþ1 ¼ F Nj ð26Þ

where

CNj�1 ¼
bðjÞ

sinh bðjÞ‘ðjÞ
RðjÞk

RðjÞt sþ 1
ð27aÞ

CNj ¼ �
bðjÞ cosh bðjÞ‘ðjÞ

sinh bðjÞ‘ðjÞ
RðjÞk

RðjÞt sþ 1

� bðjþ1Þ cosh bðjþ1Þ‘ðjþ1Þ

sinh bðjþ1Þ‘ðjþ1Þ
Rðjþ1Þ

k

Rðjþ1Þ
t sþ 1

ð27bÞ

CNjþ1 ¼
bðjþ1Þ

sinh bðjþ1Þ‘ðjþ1Þ
Rðjþ1Þ

k

Rðjþ1Þ
t sþ 1

ð27cÞ

and

F Nj ¼ CNj�1
~P ðjÞNj�1 þ CNjþ1

~P ðjþ1Þ
Njþ1

� bðjÞ cosh bðjÞ‘ðjÞ

sinh bðjÞ‘ðjÞ
RðjÞk

RðjÞt sþ 1
~P ðjÞNj

� bðjþ1Þ cosh bðjþ1Þ‘ðjþ1Þ

sinh bðjþ1Þ‘ðjþ1Þ
Rðjþ1Þ

k

Rðjþ1Þ
t sþ 1

~P ðjþ1Þ
Nj

ð27dÞ

Rearrangement of Eqs. (23) and (26) with the boundary
conditions yields the following matrix equation:

½C�f~hg ¼ fF g ð28Þ

where [C] is a matrix with the complex number s, f~hg is a
matrix representing the unknown dimensionless nodal tem-
peratures in the Laplace transform domain, and {F} is a
matrix representing the forcing term. Thereafter, the appli-
cation of the Gaussian elimination algorithm and the
numerical inversion of the Laplace transform [23] to Eq.
(28) can yield the nodal electron temperatures in the phys-
ical domain.

And then, the solution of lattice temperature in the Lap-
lce transform domain can be obtained from Eq. (11b). The
numerical inversion of the Laplace transform [23] can be
applied to perform the inverse transform of ~hl for hl.

4. Illustrative examples

The analysis of thermal behavior in double-layer and tri-
ple-layer films induced with an ultrafast laser heating is
done. Under the assumption of the incident laser beam
evolves all of its energy at dimensionless time n = 0, the
heating duration of ultrafast laser is described by the Dirac
delta function d(n), and then the source term in Eq. (6a) is
mathematically described as [24]

E ¼ Q0exp�agdðnÞ ð29Þ
where Q0 is the dimensionless heat flux intensity and a is a
constant coefficient. The Laplace transform of E iseE ¼ Q0exp�ag ð30Þ
In accordance with Eq. (30), the particular solutions of Eq.
(14) in layer j can be expressed as

eP ðjÞ ¼ Q0ðR
ðjÞ
t sþ 1Þ

RðjÞk ðbðjÞ
2

� a2Þ
expð�agÞ ð31Þ

Therefore, the analytical solution of Eq. (14) in layer j is
written as

~hðjÞe ¼ Aj cosh bðjÞgþ Bj sinh bðjÞgþ Kj expð�agÞ ð32Þ

On the other hand, the analytical solution of ~hðjÞl can be
obtained from Eqs. (11b) and (32) as

~hðjÞl ¼
NRðjÞg

RcR
ðjÞ
l sþ NRðjÞg

½Aj cosh bðjÞgþ Bj sinh bðjÞg

þ Kj expð�agÞ� ð33Þ

The numerical inversion of the Laplace transform [23] is
also applied to perform the inverse transforms of Eqs.
(32) and (33) for he and hl. The analytical solution is always
the best choice to evidence the accuracy of numerical
results.

This work performs all the computations with the dis-
tance between two neighboring nodes ‘(j) = 0.02. The con-
stant values in Eq. (29) are determined as Q0 = 5 and
a = 40. Table 1 shows thermal properties of common met-
als at the room temperature.

4.1. For double-layer films

The double-layer film, which is composed with two same
thickness films, is considered. The values of gð1;2Þin and gN are
assumed as 0.5 and 1, respectively. Thus, the boundary
conditions (13b) and (16a)–(16c) can be rewritten as



Table 1
Physical constants for metals at the room temperature [25]

Au Ag Cu Cr W Pb

G [TW m�3 K�1] 28,000 28,000 48,000 420,000 260,000 120,000
Ce [MJ m�3 K�1] 0.021 0.019 0.029 0.058 0.041 0.049
Cl [MJ m�3 K�1] 2.5 2.5 3.4 3.2 2.5 1.5
k [W m�1 K�1] 317 429 401 93.7 174 35.3
sF [ps] 0.04 0.04 0.03 0.003 0.01 0.005
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b

0 0.2 0.4 0.6 0.8 1

0

0.0001

0.0002

0.0003

0.0004

0.0005

ξ=0.8

ξ=0.2

θl

η

 = 0.02
     = 0.01
Analytical
solution

0 0.2 0.4 0.6 0.8 1
-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

   = 0.02
     = 0.01
Analytical
solution

θe

η

ξ=0.2

ξ=0.8

Rt
(1)= Rt

(2)=0

Fig. 2. Distributions of (a) electron and (b) lattice temperatures in a two-
layer film with N = 0.05, Rc = 119, Rð2Þe ¼ 2:762, Rð2Þk ¼ 0:295, Rð2Þl ¼ 1:28,
Rð2Þg ¼ 15, and Rð2Þt ¼ 0:075 at n = 0.2 and 0.8.
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d~hð1Þe ð0Þ
dg

¼ 0 ð34aÞ

~hð1Þe ð0:5Þ ¼ ~hð2Þe ð0:5Þ ð34bÞ
1

sþ 1

d~hð1Þe ð0:5Þ
dg

¼ Rð2Þk

Rð2Þt sþ 1

d~hð2Þe ð0:5Þ
dg

ð34cÞ

d~hð2Þe ð1Þ
dg

¼ 0 ð34dÞ

In accordance with the boundary conditions (34a)–
(34d), the coefficients in Eqs. (32) and (33) can be written as

A1 ¼ H 1 þ H 2A2 ð35aÞ
A2 ¼ ðH 3 þ H 4Þ=H 5 ð35bÞ

B1 ¼
aK1

bð1Þ
ð35cÞ

and

B2 ¼
aK2 expð�aÞ
bð2Þ cosh bð2Þ

� A2 tanh bð2Þ ð35dÞ

where

K1 ¼
Q0ðsþ 1Þ
bð1Þ

2

� a2
ð36aÞ

K2 ¼
Q0ðR

ð2Þ
t sþ 1Þ

Rð2Þk ðbð2Þ
2

� a2Þ
ð36bÞ

H 1 ¼ aK2 expð�aÞ sinh bð2Þ=2

bð2Þ cosh bð2Þ
� B1 sinh

bð1Þ

2

"

þ ðK2 � K1Þ expð�a=2Þ
#,

cosh
bð1Þ

2
ð36cÞ

H 2 ¼ cosh
bð2Þ

2
� sinh

bð2Þ

2
tanh bð2Þ

 !,
cosh

bð1Þ

2
ð36dÞ

H 3 ¼
Rð2Þt sþ 1

Rð2Þk ðsþ 1Þ
B1b

ð1Þ cosh
bð1Þ

2

"

þ H 1b
ð1Þ sinh

bð1Þ

2
� aK1 expð�a=2Þ

#
ð36eÞ

H 4 ¼ aK2 expð�a=2Þ � expð�aÞ cosh bð2Þ=2

cosh bð2Þ

" #
ð36fÞ

and
H 5 ¼ bð2Þ sinh
bð2Þ

2
� bð2Þ cosh

bð2Þ

2
tanh bð2Þ

� Rð2Þt sþ 1

Rð2Þk ðsþ 1Þ
H 2b

ð1Þ sinh
bð1Þ

2
ð36gÞ

The case of Au–Cr layered film (N = 0.05, Rc = 119,
Rð2Þe ¼ 2:762, Rð2Þk ¼ 0:295, Rð2Þl ¼ 1:28, Rð2Þg ¼ 15, and

Rð2Þt ¼ 0:075Þ is first performed and the numerical results
are presented in Figs. 2 and 3. Fig. 2 shows the comparison



Fig. 3. Distributions of (a) electron and (b) lattice temperatures in the
space and time domains for the two-layer film with N = 0.05, Rc = 119,
Rð2Þe ¼ 2:762, Rð2Þk ¼ 0:295, Rð2Þl ¼ 1:28, Rð2Þg ¼ 15, and Rð2Þt ¼ 0:075, com-
puted with the time interval Dn = 0.1.
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between the present numerical results computed with
‘(j) = 0.01 and 0.02 and the analytical solution at n = 0.2
and 0.8. It is found that the present numerical results for
the distributions of electron and lattice temperatures agree
with the analytical solution. This implies the present
numerical results are accurate and reliable for such prob-
lems. Referring to Eq. (29), the location of the energy pulse
peak is at g = 0.0 for n = 0. It is observed from Fig. 2(a)
that the energy pulse peak moves to g = 0.2 at n = 0.2
and the region before the energy pulse is not disturbed.
This phenomenon shows that heat transfer proceeds in a
finite velocity. In accordance with the definition of g and
n, the propagation velocity of thermal pulse in electron

gas can be stated as V 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1Þ=Cð1Þe sð1Þ

q
within layer 1

[10]. As n = 0.8, the energy pulse has encountered the inter-
face between two layers. The transmission-reflection phe-
nomenon is created at the interface due to the difference
in the thermal properties of dissimilar materials. A part
of energy gets across the interface into layer 2, the other
part is reflected and moves toward the boundary surface
g = 0. Because the propagation velocity of thermal pulse

in electron gas in layer 2 becomes V 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð2Þk =Rð2Þe Rð2Þt

q
V 1,

the location of the transmitted pulse peak is over g = 0.8
for Rð2Þe ¼ 2:762, Rð2Þk ¼ 0:295, and Rð2Þt ¼ 0:075 at n = 0.8.
The higher velocity of heat transfer in layer 2 makes more
energy across the interface and creates a downward
reflected thermal pulse. On the other hand, heat energy
transfers into the lattice and raises the lattice temperature
through the phonon–electron interactions, as shown in
Fig. 2(b). The heat-affected region in lattice is the same
with that in electron gas. However, the negative value does
not appear in the lattice temperature distribution for the
downward reflected pulse in electron gas at n = 0.8. At
the interface g = 0.5, the lattice temperature distribution
drastically increase and a clear discontinuity of the temper-
ature gradient is developed for n = 0.8. This behavior is
similar to that based on the parabolic two-step model
[17,18]. But, the lattice temperature does not increase in a
uniform form in layer 1 from n = 0.2 to n = 0.8. In addi-
tion, the thermal behavior for Rð1Þt ¼ Rð2Þt ¼ 0:0 can be
described with the parabolic two-step model. It is obvious
that the parabolic two-step thermal behavior is different
with the hyperbolic thermal behavior.

Fig. 3 presents the distributions of electron and lattice
temperatures in the space and time domains for the
case of N = 0.05, Rc = 119, Rð2Þe ¼ 2:762, Rð2Þk ¼ 0:295,
Rð2Þl ¼ 1:28, Rð2Þg ¼ 15, and Rð2Þt ¼ 0:075. Fig. 3(a) displays
that the original structure of energy pulse carried by elec-
trons and the transmission-reflection phenomenon at the
interface gradually decay with time increasing, due to the
phonon–electron interactions and heat diffusion. Cð2Þe ¼
2:762Cð1Þe for Rð2Þe ¼ 2:762 means that the ability of energy
absorption of electron gas in layer 2 is larger than that in
layer 1. The decay speed of thermal pulse in layer 2 is faster
than that in layer 1. Thermal pulses travel back and forth
at a finite propagation speed for the hyperbolic nature of
energy transport, and the negative solutions are predicted
[20–22]. It is found from Fig. 3(b) that the lattice tempera-
ture increases with time increasing for the phonon–electron
interactions and the discontinuity of the temperature gradi-
ent exists at the interface during 0 6 n 6 5. It is known that
Rð2Þl is the volumetric lattice heat capacity ratio between
layers 1 and 2. As the value of Rð2Þl increases, the value of
Cl in layer 2 increases or the value of Cl in layer 1 decreases.
In other words, the lattice of layer 2 can accumulate more
energy than the lattice of layer 1. As a result, the lattice
temperature in layer 2 should be in a relatively low value
for the larger value of Rð2Þl . However, due to the larger
value of couple factor between electrons and phonons,
the effect of the phonon–electron interactions gets stronger
in layer 2. Thus the lattice temperature in layer 2 is higher
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than that in layer 1 for Rð2Þg ¼ 15, even Rð2Þl ¼ 1:28, as
shown in Fig. 3(b). It is worthy to note that all lattice tem-
perature distributions during 0 6 n 6 5 are in the positive
domain, though some electron temperature distributions
are in the negative domain for the difference in the thermal
properties of dissimilar materials and the transmission-
reflection phenomenon at the interface.

To further know the effects of the difference in the
thermal properties of dissimilar materials on the tempera-
ture distribution, the second case, Cr–Au layered film
(N = 0.02, Rc = 55.17, Rð2Þe ¼ 0:362, Rð2Þk ¼ 3:383, Rð2Þl ¼
0:78, Rð2Þg ¼ 0:067Þ, and Rð2Þt ¼ 13:33, is studied in this part.
The numerical results for n = 0.2 and 0.8 are presented in
Fig. 4. The present results are also in a good agreement
with the analytical solution. As n = 0.2, the energy pulse
has not reached the interface yet. Layer 2 does not affect
the distributions of electron and lattice temperatures. The
distributions of electron and lattice temperatures shown
in Fig. 4 for n = 0.2 are the same with those in Fig. 2 under
that layer 1 is the reference layer. As n = 0.8, the energy
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Fig. 4. Distributions of (a) electron and (b) lattice temperatures in a
two-layer film with N = 0.02, Rc = 55.17, Rð2Þe ¼ 0:362, Rð2Þk ¼ 3:383,
Rð2Þl ¼ 0:78, Rð2Þg ¼ 0:067, and Rð2Þt ¼ 13:33 at n = 0.2 and 0.8.
pulse has encountered the interface and the transmission-
reflection phenomenon happens. It is found from Fig. 4
and the definition of gand nthat the displacement of energy
pulse in film can be described with tV. For Rð2Þe ¼ 0:362,
Rð2Þk ¼ 3:383, and Rð2Þt ¼ 13:33, the velocity of heat transfer
in layer 2 is slower than that in layer 1. Fig. 4(a) shows an
upward reflected thermal pulse and the most energy accu-
mulates in layer 1 for Rð2Þe ¼ 0:362 and Rð2Þl ¼ 0:78 at
n = 0.8. As Rð2Þg ¼ 0:067, the phonon–electron interactions
in layer 2 are weaker than that in layer 1. That is why
the lattice temperature in layer 2 is further lower than that
in layer 1 at n = 0.8. The comparison between Figs. 2 and 4
further shows the difference in the thermal properties of
dissimilar materials can affect the temperature distribution
and the temperature gradient.

4.2. For triple-layer film

This work pays attention on a triple-layer film of gð1;2Þin ¼
0:3, gð2;3Þin ¼ 0:7, and gN = 1. The boundary conditions (13b)
and (16a)–(16c) are rewritten as

d~hð1Þe ð0Þ
dg

¼ 0 ð37aÞ

~hð1Þe ð0:3Þ ¼ ~hð2Þe ð0:3Þ ð37bÞ

1

sþ 1

d~hð1Þe ð0:3Þ
dg

¼ Rð2Þk

Rð2Þt sþ 1

d~hð2Þe ð0:3Þ
dg

ð37cÞ

~hð2Þe ð0:7Þ ¼ ~hð3Þe ð0:7Þ ð37dÞ

Rð2Þk

Rð2Þt sþ 1

d~hð2Þe ð0:7Þ
dg

¼ Rð3Þk

Rð3Þt sþ 1

d~hð3Þe ð0:7Þ
dg

ð37eÞ

d~hð3Þe ð1Þ
dg

¼ 0 ð37fÞ

The coefficients in Eqs. (32) and (33) are obtained from the
boundary conditions (37a)–(37f) and are written as

A1 ¼ A2

cosh 0:3bð2Þ

cosh 0:3bð1Þ
þ B2

sinh 0:3bð2Þ

cosh 0:3bð1Þ

þ expð�0:3aÞ
cosh 0:3bð1Þ

ðK2 � K1Þ � B1 tanh 0:3bð1Þ ð38aÞ

A2 ¼ ðH2B1 þ H3H5A3 þ H3H6þ H4Þ=H1 ð38bÞ

A3 ¼ ðH7� H8Þ=ðH9� H10Þ ð38cÞ

B1 ¼
aK1

bð1Þ
ð38dÞ

B2 ¼ H5A3 þ H6 ð38eÞ

and

B3 ¼
aK3 expð�aÞ
bð3Þ cosh bð3Þ

� A3 tanh bð3Þ ð38fÞ
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Fig. 5. Distributions of (a) electron and (b) lattice temperatures in a triple-
layer film with N = 0.05, Rc = 119, Rð2Þe ¼ 2:762, Rð2Þk ¼ 0:295, Rð2Þl ¼ 1:28,

Rð2Þg ¼ 15, Rð2Þt ¼ 0:075, and Rð3Þe ¼ Rð3Þk ¼ Rð3Þl ¼ Rð3Þg ¼ Rð3Þt ¼ 1 for various
n values.
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where

H1¼Rð2Þk ðsþ1Þ
Rð2Þt sþ1

bð2Þ sinh0:3bð2Þ �bð1Þ tanh0:3bð1Þ cosh0:3bð2Þ

ð39aÞ
H2¼ bð1Þ cosh0:3bð1Þ �bð1Þ tanh0:3bð1Þ sinh0:3bð1Þ ð39bÞ

H3¼ bð1Þ tanh0:3bð1Þ sinh0:3bð2Þ �Rð2Þk ðsþ1Þ
Rð2Þt sþ1

bð2Þ cosh0:3bð2Þ

ð39cÞ

H4¼
"
bð1ÞðK2�K1Þtanh0:3bð1Þ

þa
Rð2Þk ðsþ1Þ
Rð2Þt sþ1

K2�K1

 !#
expð�0:3aÞ ð39dÞ

H5¼ðcosh0:7bð3Þ � sinh0:7bð3Þ tanhbð3ÞÞH1

H3cosh0:7bð2Þ þH1sinh0:7bð2Þ
ð39eÞ

H6¼
sinh0:7bð3Þ aK3 expð�aÞ

bð3Þ coshbð3Þ
þ ðK3�K2Þexpð�0:7aÞ

h i
H1�cosh0:7bð2ÞðH2B1þH4Þ

H3cosh0:7bð2Þ þH1sinh0:7bð2Þ

ð39fÞ

H7¼ðH2B1þH3H6þH4Þ
H1

bð2Þ sinh0:7bð2Þ

þH6bð2Þ cosh0:7bð2Þ �aK2 expð�0:7aÞ ð39gÞ

H8¼Rð3Þk ðR
ð2Þ
t sþ1Þ

Rð2Þk ðR
ð3Þ
t sþ1Þ

cosh0:7bð3Þ

coshbð3Þ
aK3 expð�aÞ

 

�aK3 expð�0:7aÞ
!

ð39hÞ

H9¼Rð3Þk ðR
ð2Þ
t sþ1Þ

Rð2Þk ðR
ð3Þ
t sþ1Þ

ðbð3Þ sinh0:7bð3Þ �bð3Þ cosh0:7bð3Þ tanhbð3ÞÞ

ð39iÞ

and

H10 ¼ H5bð2Þ cosh 0:7bð2Þ þ H3H5

H1
bð2Þ sinh 0:7bð2Þ ð39jÞ

It is found from the above Eqs. (38a)–(38f), (39a)–(39j) that
the analytical solution for the triple-layer film becomes
complicate. It implies that the difficulty for solving such
problems increases with the composite interfaces of dissim-
ilar materials increasing.

The numerical results shown in Figs. 5 and 6 are com-
puted for a Au–Cr–Au layered film with N = 0.05,
Rc = 119, Rð2Þe ¼ 2:762, Rð2Þk ¼ 0:295, Rð2Þl ¼ 1:28, Rð2Þg ¼ 15,
Rð2Þt ¼ 0:075, and Rð3Þe ¼ Rð3Þk ¼ Rð3Þl ¼ Rð3Þg ¼ Rð3Þt ¼ 1. Solv-
ing the present problems may encounter some mathemati-
cal difficulties that must be precluded for obtaining an
admissible solution. The mathematical difficulties may
arise when a thermal pulse encounters a boundary or
another temperature discontinuity. Due to composite inter-
face increasing, the analysis of the present example is more
difficult. However, Fig. 5 shows a good agreement of the
present results with the analytical solution. It further dis-
plays the efficiency of the present numerical scheme for
such problems. Fig. 5(a) shows a downward reflected ther-
mal pulse in electron gas is created at the interface g ¼
gð1;2Þin ¼ 0:3 and moves in layer 1 for the reasons corre-
sponding to Fig. 2(a). As n = 0.8, this reflected thermal
pulse has encountered the boundary surface g = 0 and
moves toward the interface g ¼ gð1;2Þin ¼ 0:3. At the same
time, the transmitted thermal pulse has encountered the
interface g ¼ gð2;3Þin ¼ 0:7. Another transmission-reflection
phenomenon happens in layers 2 and 3. It is observed that
multi thermal pulses appear at the same time for the effects
of the transmission-reflection at the interfaces of dissimilar
materials. The temperature gradient is obvious around the
thermal pulses. Due to superposition of thermal pulses,
heat diffusion, and the phonon–electron interactions, the
thermal pulses have faded at n = 1.2. On the other hand,
there no obvious thermal pulse exists in lattice, as shown
in Fig. 5(b). But, the lattice temperature distributions in



Fig. 6. Distributions of (a) electron and (b) lattice temperatures in the
space and time domains for the triple-layer film with N = 0.05, Rc = 119,
Rð2Þe ¼ 2:762, Rð2Þk ¼ 0:295, Rð2Þl ¼ 1:28, Rð2Þg ¼ 15, Rð2Þt ¼ 0:075, and
Rð3Þe ¼ Rð3Þk ¼ Rð3Þl ¼ Rð3Þg ¼ Rð3Þt ¼ 1, computed with the time interval
Dn = 0.1.
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layer 2 are sharper than that in layers 1 and 3. This result
implies that the lattice temperature gradient depends on the
thermal properties of material. The comparison among
Figs. 2, 4, and 5 also implies that the thermal property
ratios of dissimilar materials can affect the temperature dis-
tribution and the temperature gradient in layered films. In
other words, the heating direction may change the temper-
ature distributions and the temperature gradient in layered
films.

The distributions of electron and lattice temperatures in
the space and time domains for the triple-layer film are dis-
played in Fig. 6. It is found from Fig. 6(a) that the thermal
pulses concentrates in layer 1 for the effects of the thermal
properties in layer 2. Heat energy carried by electrons is
rapidly transferred to lattice through the phonon–electron
interactions for Rð2Þg ¼ 15 in layer 2. The thermal pulses
transmitted in electron gas go to decay in layer 2.
Fig. 6(b) shows that the lattice temperature in layer 2 is
higher than that in layer 1. This result is similar to that
shown in Fig. 3(b). And also, the negative solutions appear
in Fig. 6(a) for the same reason illustrated for Fig. 3(a).

5. Conclusions

This work analyzes the microscopic heat transfer in
multi-layer metal films with the hyperbolic two-step model,
and an efficient numerical scheme is developed to counter
the mathematical difficulties induced by the hyperbolic nat-
ure of heat transfer in electron gas, the coupled energy
equations, and the interfacial boundary conditions. The
numerical results and analytical solutions are presented
for the problems in the double-layer and triple-layer films
with an ultrashort laser heating, which the pulse duration
is described with the Dirac delta function. The comparison
between the numerical results and the analytical solutions
evidences the efficiency of the present numerical scheme
for such problems. Results show that thermal pulses travel
back and forth in electron gas at a finite propagation speed
for the hyperbolic nature of energy transport. However, the
effect of the hyperbolic nature of heat transfer on the lattice
temperature distribution is not obvious. The heat-affected
region depends on the propagation velocity of heat trans-
fer. The difference in the thermal properties of dissimilar
materials creates the transmission-reflection phenomenon
of thermal pulse at the interface and affects the temperature
distribution and the temperature gradient in layered films.
The thermal pulses in electron gas fade for superposition of
thermal pulses, heat diffusion, and the phonon–electron
interactions.
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